The Effect of Grain Boundaries on the Elastic, Acoustical and Thermo-Physical Properties of Metal-Ceramics Composites
نویسنده
چکیده
The purpose of this work was searching of the formation of grain boundaries in metal-ceramics composites at various metal concentrations and sintering temperatures, influence of these boundaries on elastic moduli, coefficient absorption ultrasonic waves (USW) and thermo-conductivity to find the coupling of these properties and to estimate the optimal value of the metal concentration for achieve high quality of ready composites “corundum-stainless steel”. These boundaries are formed in the sintering process. In this work, cermets sintered in a high vacuum at different temperatures are investigated. Сermets (metal-ceramic composites) are modern construction materials used in different branches of industry. Their toughness and heat resistance are determined by their elastic and thermo-physical properties. In addition, these properties are significantly dependent on the grain boundaries in the material. The elastic moduli and absorption coefficient were measured by the ultrasonic method at room temperature; measurement of the thermal conductivity coefficient was carried out at temperature 200°C. In addition the samples structure was investigated by optical and scanning electron microscopy (SEM), cermets composition was determined by energydispersive X-ray spectroscopy method (EDS). We found two extremes for the concentration dependence of the elastic moduli (E and G) on the stainless steel concentrations, the nature of which is unknown. Similar dependence is observed also for the thermal conductivity coefficient and coefficient absorption ultrasonic waves. A discussion of the results is based on the structure cermet model as multiphase micro heterogeneous media with isotropic physical properties is also presented. *Corresponding author: Abramovich A, St. Petersburg State University of Technology and Design, Higher School of Technology and Design, 198095 St. Petersburg, Russia, Tel: +78125402053; E-mail: [email protected] Received July 21, 2017; Accepted July 29, 2017; Published August 10, 2017 Citation: Abramovich A (2017) The Effect of Grain Boundaries on the Elastic, Acoustical and Thermo-Physical Properties of Metal-Ceramics Composites. J Material Sci Eng 6: 366. doi: 10.4172/2169-0022.1000366 Copyright: © 2017 Abramovich A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
منابع مشابه
Effect of Silicon Carbide and graphite additives on the pressureless Sintering mechanism and microstructural characteristics of Ultra-High Temperature ZrB2 Ceramics Composites
The effect of SiC content, additives, and process parameters on densification and microstructural properties of pressureless sintered ZrB2– (1–10 wt %) SiC particulate composites have been studied. The ZrB2–SiC composite powders mixed by Spex mixer with 1-2wt% C (added as graphite powder) and CMC have been cold-compacted and sintered in argon environment in the temperature range of 1800–2100ºC ...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملEnvironmental effects on mechanical properties of glass/epoxy and fiber metal laminates, Part II: Isothermal aging
The aim of this study is to investigate effects of isothermal aging on mechanical properties of fiber metal laminates (FMLs) and glass/epoxy composites. For this purpose, both materials were fabricated using the wet lay-up manufacturing technique under vacuum pressure. Both the glass/epoxy composites and the FML specimens were then subjected to isothermal aging (130°C, dried air) for up to 5 we...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملThe Effect of TiC Additive with Al2O3-Y2O3 on the Microstructure and Mechanical Properties of SiC Matrix Composites
In this research, the SiC-matrix composite with different amounts of TiC (0, 2.5, 5, 7.5, and 10 wt%) supplemented with additives including 4.3 wt% Al2O3 and 5.7 wt% Y2O3 were utilized to initiate the required liquid phase. The sintering process was performed using pressureless sintering at 1900 °C for 1.5 hours under argon atmosphere. The compos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017